DPP-2 (Capacitor)

Video Solution on Website :-
 https://physicsaholics.com/home/courseDetails/103

Video Solution on YouTube:- https://youtu.be/OC-wN30Uf_8

Written Solution on Website:- https://physicsaholics.com/note/notesDetalis/63

Q 1. What is equivalent capacitance of circuit between points A and B ?

(a) $2 / 3 \mu \mathrm{~F}$
(b) $4 / 3 \mu \mathrm{~F}$
(c) Infinite
(d) $(1+\sqrt{3}) \mu \mathrm{F}$

Q 2. Two parallel plate capacitors with same area of cross-section but different distance between plates are connected as shown in figure.

(a) $E_{A}>E_{B}$
(b) $E_{A}=E_{B}$
(c) $V_{A}>V_{B}$
(d) $V_{A}<V_{B}$

Q 3. The figure shows a circuit of four capacitors. The effective capacitance between X and Y is

(a) $2 \mu \mathrm{~F}$
(b) $1 \mu \mathrm{~F}$
(c) $3 \mu \mathrm{~F}$
(d) $1.5 \mu \mathrm{~F}$

Passage (Q. 4 TO Q.6)
The V verses x plot for six identical metal plates of cross-sectioned area A is shown. The plates are placed with separation d

Q 4. Equivalent capacitance between 2 \& 5 is-
(A) $\frac{2 \varepsilon_{0} A}{d}$
(B) $\frac{\varepsilon_{0} A}{d}$
(C) $\frac{3 \varepsilon_{0} A}{d}$
(D) $\frac{4 \varepsilon_{0} A}{d}$

Q 5. Total charge on plate 2 is -
(a) $\frac{10 \varepsilon_{0} A}{d}$
(b) $\frac{5}{3} \frac{\varepsilon_{0} A}{d}$
(c) $\frac{4}{3} \frac{\varepsilon_{0} A}{d}$
(d) None of these

Q 6. Ratio of charge on plate 2 to plate 5 is $\left|Q_{2}: Q_{5}\right|$ is -
(a) $2: 1$
(b) $3: 1$
(c) $1: 1$
(d) None of these

Q 7. In the circuit diagram shown below :

(a) The effective capacity between A and C is $\frac{3}{2} \mu \mathrm{f}$
(b) The effective capacity between A and C is $\frac{5}{2} \mu f$
(c) The potential difference between A and B in steady state is $\frac{75}{2}$ volt
(d) The potential difference between B and C in steady state is $\frac{75}{2}$ volt

Q 8. The equivalent capacitance between point A and B is -

(a) $C / 4$
(b) $\mathrm{C} / 2$
(c) C
(d) 2 C

Q 9. In the arrangement shown, all plates have equal area. The amount of spacing between plates is mentioned. Find the equivalent capacitance of the system between A and B if $C=\frac{\varepsilon_{0} A}{L}$

(A) $5 \mathrm{C} / 7$
(B) $3 \mathrm{C} / 7$
(C) $\mathrm{C} / 7$
(D) None of the above

Q 10. Four metallic plates each with a surface area of one side A are placed at a distance d from each other. The plates are connected as shown in the circuit diagram. Then the capacitance of the system between a and b is

(a) $\frac{3 \varepsilon_{0} A}{d}$
(b) $\frac{2 \varepsilon_{0} A}{d}$
(c) $\frac{2 \varepsilon_{0} A}{3 d}$
(d) $\frac{3 \varepsilon_{0} A}{2 d}$

Q 11. Equivalent capacitance between A and B is

(a) $4 \mathrm{C} / 3$
(b) $8 \mathrm{C} / 3$
(c) 12 C
(d) $5 \mathrm{C} / 12$

Q 12. Find equivalent capacitance between A and B

(a) $5 \mu \mathrm{~F}$
(b) $4 \mu \mathrm{~F}$
(c) $3 \mu \mathrm{~F}$
(d) $2 \mu \mathrm{~F}$

Answer Key

Q. 1 b	Q. 2 b, c	Q. 3 a	Q. 4 b	Q. 5 a	
Q. 6 c	Q. 7 b, d	Q. 8 d	Q. 9 b	Q. 10 d	
Q. 11 b	Q. 12 a				

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI ₹56,000

18 months

No cost EMI

12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
Study Planner

To be paid as a one-time payment View all plans
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP 2 - Capacitor : Combination of Series and Parallel Capacitor, Wheat Stone Bridge By Physicsaholics Team
(Q.1) What is equivalent capacitance of circuit between points A and B?
extended wheat stone
(a) $2 / 3 \mu \mathrm{~F}$ bridge.
(b) $4 / 3 \mu \mathrm{~F}$
(c) Infinite
(d) $(1+\sqrt{3}) \mu \mathrm{F}$

$$
\frac{A}{C}=\frac{1}{1}+\frac{1}{3}+\frac{1}{9}+\ldots=\frac{1}{1-1 / 3}=3 / 2 .
$$

$$
2 / 3 \mu F
$$

$$
C_{p f f}=c+c=4 / 3 h F
$$

(Q.2) Two parallel plate capacitors with same area of cross-section but different distance between plates are connected as shown in figure.

$$
E=\frac{q}{A \epsilon_{0}} \Rightarrow E_{H}=E_{B} .
$$

(a) $E_{A}>E_{B}$ (c) $V_{A}>V_{B}$

(Q.3) The figure shows a circuit of four capacitors. The effective capacitance between X and Y is

Passage(Q. 4 TO Q.6)

The V verses x plot for six identical metal plates of cross-sectioned area A is shown. The plates are placed with separation d

$$
C=\frac{A \in 0}{d}
$$

(Q.5) Total charge on plate 2 is -
(a) $\frac{10 \varepsilon_{0} A}{d}$
(b) $\frac{5}{3} \frac{\varepsilon_{0} A}{d}$
(Q.6) Ratio of charge on plate 2 to plate 5 is $\left|Q_{2}: Q_{5}\right|$ is -
(a) $2: 1$
(b) $3: 1$
(c) 1.1
(d) None of these

$$
\frac{6 x^{2}}{8}=\frac{3}{2} \mu F
$$

(Q.7) In the circuit diagram shown below :

(a) The effective capaeity between A and C is $\frac{3}{2} \mu \mathrm{f} \quad \frac{V_{1}}{V_{2}}=\frac{2}{6}=1 / 3$.
(b) The effective capacity between Arand C is $\frac{5}{2} \mu \mathrm{f} \quad V_{1}+V_{2}=50$
(c) The potential difference between A and B in steady state is $\frac{75}{2}$ volt (d) The potential difference between B and C in steady state is $\frac{75}{2}$ volt

$$
\begin{aligned}
V_{2} & =\frac{3}{4} \times 5 \sigma^{25} \\
& =75 / 2 \mathrm{~V}
\end{aligned}
$$

(Q.8) The equivalent capacitance between point A and B is

(Q.9) In the arrangement shown, all plates have equal area. The amount of spacing between plates is mentioned. Find the equivalent capacitance of the system between A and B if $C=\frac{\varepsilon_{0} A}{L}$
(a) $5 \mathrm{C} / 7$
(b) $3 \mathrm{C} / 7$
(c) $\mathrm{C} / 7$
(d) Noneof the above
(Q.10) Four metallic plates each with a surface area of one side A are placed at a distance d from each other. The plates are connected as shown in the circuit

(Q.11) Equivalent capacitance between A and B is
(a) $4 \mathrm{C} / 3$ (b) $8 \mathrm{C} / 3$
(c) 12 C
(d) $5 \mathrm{C} / 2$

(Q.12) Find equivalent capacitance between A and B
(a) $5 \mu \mathrm{~F}$
(b) $4 \mu \mathrm{~F}$
(c) $3 \mu \mathrm{~F}$
(d) $2 \mu \mathrm{~F}$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-
https://physicsaholics.com/home/courseDetails/10 3

Video Solution on YouTube:-

Written Solution on Website:-

Chalo Nikis

